

Betriebsanleitung für Anschlagmittel aus Stahldrahtseilen, Ketten und Chemiefasern

Ein- und mehrsträngige Anschlagseile

Ein- und mehrsträngige Anschlagketten

Textile Anschlagmittel und textile Komponenten von Anschlagmitteln

Bitte vor der Inbetriebnahme des Anschlagmittels durchlesen und aufbewahren!

Jakob AG Dorfstrasse 34 CH-3555 Trubschachen

E-Mail: info@jakob.ch Telefon: +41 34 495 10 10

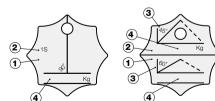
1. Allgemeines

1.1 Gültigkeitsbereich

Die folgende Betriebsanleitung wurde nach der Richtlinie 2006/42/EG (Maschinenrichtlinie) verfasst und behandelt ein- und mehrsträngige Anschlagseile nach EN 13414, -Ketten nach EN 818, textile Anschlagmittel nach EN 1492 sowie damit verbundene Einzelteile für Anschlagmittel nach EN 1677. Die Betriebsanleitung soll Gefahren für Mensch und Anschlagmittel vermeiden helfen.

Die Jakob AG schliesst jede Haftung für Schäden und Verletzungen aus, wenn diese Hinweise und entsprechende gesetzliche Normen und Vorschriften nicht beachtet werden, die Produkte manipuliert werden oder die Produkte unsachgemäss bzw. entgegen ihrer vorgesehenen Bestimmung verwendet werden.

Nationale Regelwerke der SUVA oder der Berufsgenossenschaften und Unfallkassen sind zu berücksichtigen, z.B. Lerneinheiten der SUVA oder DGUV Information 209-013 «Anschläger» (Stand 2012).


1.2 Sicherheitsvorschriften

Anschlagmittel-Nutzer müssen beauftragt und unterwiesen sein, um durch Kenntnis und Respektierung der Eigenschaften und Arbeitsbedingungen von Drahtseilen, Ketten und textilen Anschlagmitteln mit zur sicheren Anwendung beizutragen. Achten Sie auf Ihre Sicherheit und die Ihrer Mitmenschen!

Vor der Anwendung:

Kontrollieren Sie Anschlagmittel vor jeder Verwendung auf ihren ordnungsgemässen Zustand und evtl. Beschädigung. Abgenutzte oder beschädigte Anschlagmittel sind zu ersetzen

Die Tragfähigkeit des vorliegenden Anschlagmittels ist der Belastungsplakette bzw. bei textilen Anschlagmitteln dem eingenähten Etikett zu entnehmen. Die Anhänger von Anschlagmitteln sind wie folgt aufgebaut:

- 1 Nenngrösse
- 2 Strangzahl
- 3 Neigungswinkel
- 4 Zulässige Belastung

Links: einsträngige Anschlaggeschirre, rechts: mehrsträngige Geschirre

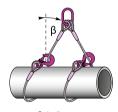
Die Masse der Last muss bekannt sein. Die zulässige Tragfähigkeit (Working Load Limit WLL) des Anschlagmittels darf nicht überschritten werden. Andernfalls sind

diese nach Überlastungen sofort ausser Betrieb zu nehmen und zu ersetzen. Stränge dürfen nicht verdreht oder verknotet sein.

Die Lage des Schwerpunkts muss bekannt sein oder ermittelt werden. Der Neigungswinkel eines Stranges darf nicht grösser als 60° sein. Drei- und viersträngige Anschlagmittel müssen möglichst gleichmässig geneigt und an der zu hebenden Last verteilt sein

Während der Anwendung:

Achten Sie auf mögliche Klemmstellen. Fassen Sie nicht unter Umschnürungen. Leere Stränge sind in den oberen Ring einzuhängen. Scharfe Kanten sind durch geeignete Unterlagen zu reduzieren, siehe § 2.1, 3.1 und 4.1.


Die Last muss freigängig sein und bei Bedarf mit einem Leitseil geführt werden. Ring und Schäkel müssen frei beweglich sein und im Hakengrund aufliegen. Haken dürfen nicht an der Spitze belastet werden. Die Reduktionsfaktoren für unterschiedliche Anordnungen sind zu beachten, z.B. bei mehrsträngigen Gehängen mit geneigten Strängen:

Neigungswinkel β gegen die Senkrechte	Tragfähigkeit eines Strangs
0°	100%
bis 45°	70%
45° bis 60°	50%

Bei mehrsträngigen Anschlagmitteln müssen die Stränge möglichst gleichmässig angeordnet werden. Bei Vierstrang-Gehängen werden nur drei Stränge als tragend gerechnet.

Schnürgang

Schnürgang mit Einlegen in Haken.

Schnürgang mit geneigten Strängen.

Im Schnürgang oder beim Einlegen des Strangs in den Haken ist eine Tragkraft-Reduktion um 20 % zu berücksichtigen.

Stehen Sie niemals unter schwebenden Lasten!

2

Nach der Anwendung:

Anschlagmittel sollten bei Bedarf fachgerecht gereinigt und an einem geeigneten, trockenen Ort aufgehängt werden.

1.3 Überprüfung und allgemeine Ablegekriterien

Anschlagmittel sind vor jeder Verwendung auf ihren ordnungsgemässen Zustand augenscheinlich zu prüfen. Anschlagmittel ohne oder mit unleserlichem Kennzeichnungsanhänger dürfen nicht verwendet werden. Spezifische Ablegekriterien für Seile, Ketten und textile Anschlagmittel siehe § 2.2. 3.2 und 4.2.

Mindestens jährlich müssen eine Überprüfung und ggf. Instandsetzung durch eine befähigte Person erfolgen. Bei erhöhten Einsatzfrequenzen ist das Prüfintervall herabzusetzen.

Beschlag- und Zubehörteile sind bei sichtbaren mechanischen Schäden, bei Durchmesser-Reduktionen über 5% oder Verformungen über 10% ausser Betrieb zu nehmen.

1.4 Entsorgung

Anschlagseile- und Ketten bieten zum Zeitpunkt ihrer Entsorgung überwiegend Stahlschrott als Rohstoff und sind daher den entsprechenden Fachunternehmen zum Recycling zuzuführen.

2. Ein- und mehrsträngige Anschlagseile

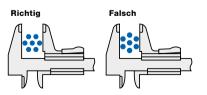
2.1 Ergänzende allgemeine Informationen

Die Einsatztemperatur von Anschlag-Drahtseilen liegt bei –40 °C bis 100 °C. Der Hitzeeinwirkung eines Brandes können sie nur kurze Zeit standhalten.

Anschlagseile dürfen nicht um scharfe Kanten mit einem Radius kleiner dem Seildurchmesser gelegt werden. Zur Entschärfung einer Kante ist ein geeigneter Schutz unter das Anschlagmittel zu legen.

2.2 Ergänzende Ablegekriterien für Anschlagseile

Bei der Sichtprüfung der Seile ist vor allem auf äussere Beschädigungen und Korrosion zu achten. Verformte Drähte und Litzen können unter Last spannungslos bleiben, so dass der Seilquerschnitt nur zum Teil mit der ganzen Last beaufschlagt wird. Daher sind Anschlagseile mit sichtbaren Verformungen wie Knicke, Klanken und Verwerfungen ablegereif. Bei sichtbaren Drahtbrüchen oder Korrosion ist ein Anschlagseil ebenso ablegereif. Die Bilder auf der nächsten Seite zeigen Beispiele für die Ablegekriterien Knick, Klanke, Drahtbrüche, Verwerfung und Korrosion.



Bei der Durchmessermessung von Anschlagdrahtseilen ist auf das korrekte Ansetzen des Messchiebers zu achten. Der Seildurchmesser darf maximal um 10% unter den Nenndurchmesser gefallen sein.

4

3. Ein- und mehrsträngige Anschlagketten

3.1 Ergänzende allgemeine Informationen

Die Einsatztemperatur der Kettengehänge liegt bei –40°C bis +200°C.

Bei höheren Temperaturen ist die Tragkraft gemäss nebenstehender Tabelle zu reduzieren.

Kettentemperatur	Rest-Tragfähigkeit in % der Tabelle
+200°C bis +300°C	90%
+300°C bis +400°C	75 %

In säure- und laugehaltigen Umgebungen sowie mit anderen korrosionsfördernden Medien dürfen Ketten der Güteklassen 8, 10 und 12 nicht eingesetzt werden. Hier können nicht sichtbare Versprödungen und Risse entstehen.

Kettengehänge dürfen nur durch geeignete Verkürzungshaken in der Länge verstellt werden. Knoten und Biegebelastungen auf einzelne Kettenglider müssen unbedingt vermieden werden.

Anschlagketten dürfen nicht um scharfe Kanten mit einem Radius kleiner der Nenndicke der Kette gelegt werden. Zur Entschärfung einer Kante ist ein geeigneter Schutz unter die Kette zu legen.

3.2 Ergänzende Ablegekriterien für Anschlagketten

Bei der Sichtprüfung der Ketten ist vor allem auf äussere Beschädigungen und Korrosion zu achten. Sollten verbogene oder anderweitig verformte Kettenglieder vorgefunden werden, ist die Kette ausser Betrieb zu nehmen. Nach bekannten besonderen Ereignissen (z.B. Stossbelastung, Einklemmen, Brand, Säurekontakt) ist das Anschlagmittel ausser Betrieb zu nehmen.

Sollte sich die Kette lokal oder auf der ganzen Länge um mehr als 5 % gelängt haben, ist das Anschlagmittel ausser Betrieb zu nehmen.

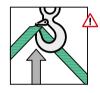
Die Nenndicke darf an keiner Stelle um mehr als 10 % abgenommen haben.

Die folgenden Grafiken zeigen Beispiele, wie die Ablegekriterien an einer Kette zu bestimmen sind:

Ketten mit örtlichen Schäden wie gebogenen Gliedern, Rissen oder Kerben sind ablegereif.

An keiner Stelle darf die Kette eine Dehnung von mehr als 5% aufweisen.

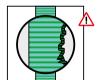
Verringerung der Kettendicke darf 10 % nicht überschreiten.


4. Textile Anschlagmittel und textile Komponenten von Anschlagmitteln

4.1 Ergänzende allgemeine Informationen

Die Einsatztemperatur von textilen Anschlagmitteln aus Polyester liegt bei –40 °C bis 100 °C.

Die Produkte müssen auf der ganzen Breite gleichmässig belastet werden. Punktuelle Belastungen können zum Riss des Anschlagmittels führen. Bewegungen über Haken, Bolzen und Ringe oder zwischen Ladegut und anderen stehenden Elementen wie Böden, Wänden oder Strukturelementen sind absolut zu vermeiden. Rundschlingen und Hebebänder dürfen nicht geknotet werden!



Jegliche Form von scharfen Kanten sind durch geeigneten Kantenschutz zu kompensieren. Reine Scheuerschutzschläuche ("Feuerwehrschläuche") dürfen nicht als Kantenschutz eingesetzt werden.

4.2 Ergänzende Ablegekriterien für textile Anschlagmittel

Bei sichtbarem Verschleiss, lokalen Beschädigungen – vor allem an den Hauptnähten – oder Einwirkung von Hitze, Säuren und Laugen sind textile Anschlagmittel abzulegen.

6

1.0		β = 0°	200	1 050	1550	2120	2700	4350	5200	6300	7 200	8400	9500	11000	14 000	15100
0.8		β = 0°	260	840	1240	1 700	2160	3480	4160	5040	2 2 2 6 0	6720	7 600	0088	11 200	12680
4.4	<u>a</u>	β = 0-45°	086	1470	2170	2970	3780	0609	7280	8820	10080	11760	13300	15400	19600	21140
1.0		β = 45-60°	002	1 050	1 550	2120	2700	4350	5200	6300	7 200	8400	9500	11 000	14 000	15100
1.12		β = 0-45°	082	1180	1740	2370	3020	4870	5820	2 090	8060	9410	10640	13320	15680	16910
2.1	9	β = 0-45°	1470	2210	3260	4450	9299	9140	10920	13230	15120	17 640	19950	23100	29400	31710
1.5		β = 45-60°	1 050	1580	2330	3180	4050	6530	7 800	9450	10800	12600	14250	16500	21 000	22 650

Tragfähigkeits-Tabelle für Anschlag-Ketten

Alle Tragfähigkeits-Werte in Kilogramm (kg)

Last- 1.0 0.8 Faktor	Nenn- Grösse (mm)	$\beta = 0^{\circ}$ $\beta = 0^{\circ}$	GK8	6 1120 900	7 1500 1200	8 2000 1600	10 3150 2520	13 5300 4240	16 8000 6400	GK10	8 2500 2000	10 4000 3200	13 6700 5360		0008	3000
4.		β = 0-45°		1600	2120	2800	4250	7 500	11200		3500	2,600	9380		4250	4250
1.0	BOO	β = 45-60°		1120	1500	2000	3150	5300	8000		2500	4 000	6700		3000	3000
3		β = 0-45°		1230	1 650	2200	3460	5830	8800		2750	4400	7370		3350	3350
2.1	120°	β = 0-45°		2360	3150	4250	0029	11 200	17 000		5250	8400	14070		9300	6300
1.5		β = 45-60°		1700	2240	3000	4750	8000	11800		3750	0009	10050		4500	4500

Last- Faktor	1.0	8.0	4:	1.0	<u> 5</u>	2,	5.1
Kenn- farbe			B				
kg	β = 0°	β = 0°	β = 0-45°	β = 45-60°	β = 0-45°	β = 7-45°	β = 45-60°
1000	1000	800	1400	1000	1100	2100	1 500
2000	2000	1600	2800	2000	2200	4200	3000
	3000	2400	4200	3000	3300	6300	4500
	4000	3200	2,600	4000	4400	8400	0009
5000	2000	4000	7 000	2000	5500	10500	7 500
0009	0009	4800	8400	0009	0099	12600	0006
8000	8000	6400	11200	8000	8800	16800	12000
10000	10000	8000	14 000	10000	11 000	21000	15000

EG-Konformitätserklärung nach Richtlinie 2006/42/EG

Als Hersteller für Produkte der Seil- und Hebetechnik erklärt hiermit die

Jakob AG Dorfstrasse 34 CH-3555 Trubschachen

Tel.: +41 34 495 10 10 Email: info@jakob.ch Internet: www.jakob.com

dass die folgenden Produkte konform mit der Richtlinie 2006/42/EG sind:

Anschlagdrahtseile der Festigkeitsklassen 1770 und 1960 N/mm² 1- bis 4-strängig oder endlos verspleisst mit Anschlusselementen

Zusätzlich wurden die nachfolgenden harmonisierten Normen berücksichtigt:

- EN 12385-4. Drahtseile aus Stahldraht Sicherheit Teil 4
- EN 13411-3, Endverbindungen für Drahtseile aus Stahldraht Sicherheit Teil 3
- EN 13414. Anschlagseile aus Stahldrahtseilen Sicherheit. Teile 1 und 2
- EN 1677. Einzelteile für Anschlagmittel Sicherheit. Teile 1 bis 6

Anschlagketten der Güteklassen 8, 10 und 12 1- bis 4-strängig oder endlos mit Anschlusselementen

Zusätzlich wurden die nachfolgenden harmonisierten Normen berücksichtigt:

- EN 818. Kurzgliedrige Rundstahlketten für Hebezwecke Sicherheit. Teile 1 bis 7
- EN 1677. Einzelteile für Anschlagmittel Sicherheit. Teile 1 bis 6

Textile Hebebänder und Rundschlingen aus Polyester

Zusätzlich wurden die nachfolgenden harmonisierten Normen berücksichtigt:

- EN 1492. Textile Anschlagmittel Sicherheit. Teile 1 und 2
- EN 1677. Einzelteile für Anschlagmittel Sicherheit. Teile 1 bis 6

Seriennummer und Baujahr sind dem jeweiligen Tragfähigkeits-Anhänger zu entnehmen.

Die zugehörige Betriebsanleitung der Jakob AG ist zu berücksichtigen.

Das Qualitäts-Management-System der Jakob AG ist durch die SQS Zollikofen (CH) mit Dokument Nr. 44783 vom 15.09.2018 nach ISO 9001:2015 zertifiziert.

Trubschachen (CH), Mai 2020

Dr.-Ing. Konstantin Kühner

Peter Jakob

